Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
iScience ; 27(4): 109297, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38715943

ABSTRACT

The One Health (OH) approach is used to control/prevent zoonotic events. However, there is a lack of tools for systematically assessing OH practices. Here, we applied the Global OH Index (GOHI) to evaluate the global OH performance for zoonoses (GOHI-Zoonoses). The fuzzy analytic hierarchy process algorithm and fuzzy comparison matrix were used to calculate the weights and scores of five key indicators, 16 subindicators, and 31 datasets for 160 countries and territories worldwide. The distribution of GOHI-Zoonoses scores varies significantly across countries and regions, reflecting the strengths and weaknesses in controlling or responding to zoonotic threats. Correlation analyses revealed that the GOHI-Zoonoses score was associated with economic, sociodemographic, environmental, climatic, and zoological factors. Additionally, the Human Development Index had a positive effect on the score. This study provides an evidence-based reference and guidance for global, regional, and country-level efforts to optimize the health of people, animals, and the environment.

2.
Clin Genet ; 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38544467

ABSTRACT

We summarize the copy number variations (CNVs) and phenotype spectrum of infantile epileptic spasms syndrome (IESS) in a Chinese cohort. The CNVs were identified by genomic copy number variation sequencing. The CNVs and clinical data were analyzed. 74 IESS children with CNVs were enrolled. 35 kinds of CNVs were identified. There were 11 deletions and 5 duplications not reported previously in IESS, including 2 CNVs not reported in epilepsy. 87.8% were de novo, 9.5% were inherited from mother and 2.7% from father. Mosaicism occurred in one patient with Xq21.31q25 duplication. 16.2% (12/74) were 1p36 deletion, and 20.3% (15/74) were 15q11-q13 duplication. The age of seizure onset ranged from 17 days to 24 months. Seizure types included epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. All patients displayed developmental delay. Additional features included craniofacial anomaly, microcephaly, congenital heart defects, and hemangioma. 29.7% of patients were seizure-free for more than 12 months, and 70.3% still had seizures after trying 2 or more anti-seizure medications. In conclusion, CNVs is a prominent etiology of IESS. 1p36 deletion and 15q duplication occurred most frequently. CNV detection should be performed in patients with IESS of unknown causes, especially in children with craniofacial anomalies and microcephaly.

4.
Infect Dis Poverty ; 12(1): 70, 2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37537637

ABSTRACT

BACKGROUND: One Health approach is crucial to tackling complex global public health threats at the interface of humans, animals, and the environment. As outlined in the One Health Joint Plan of Action, the international One Health community includes stakeholders from different sectors. Supported by the Bill & Melinda Gates Foundation, an academic community for One Health action has been proposed with the aim of promoting the understanding and real-world implementation of One Health approach and contribution towards the Sustainable Development Goals for a healthy planet. MAIN TEXT: The proposed academic community would contribute to generating high-quality scientific evidence, distilling local experiences as well as fostering an interconnected One Health culture and mindset, among various stakeholders on different levels and in all sectors. The major scope of the community covers One Health governance, zoonotic diseases, food security, antimicrobial resistance, and climate change along with the research agenda to be developed. The academic community will be supported by two committees, including a strategic consultancy committee and a scientific steering committee, composed of influential scientists selected from the One Health information database. A workplan containing activities under six objectives is proposed to provide research support, strengthen local capacity, and enhance global participation. CONCLUSIONS: The proposed academic community for One Health action is a crucial step towards enhancing communication, coordination, collaboration, and capacity building for the implementation of One Health. By bringing eminent global experts together, the academic community possesses the potential to generate scientific evidence and provide advice to local governments and international organizations, enabling the pursuit of common goals, collaborative policies, and solutions to misaligned interests.


Subject(s)
Global Health , One Health , Animals , Humans , Zoonoses/prevention & control , Public Health , Capacity Building
5.
Org Lett ; 25(35): 6549-6554, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37615297

ABSTRACT

An unprecedented three-component [2 + 2 + 1] annulation cascade of indoles with aryldiazonium salts and polyhalomethanes or acetone is presented by dual hydrogen atom transfer (HAT) and C-H functionalization. By employing readily accessible aryldiazonium salts as the radical initiators and electrophiles and polyhalomethanes and acetone as the C1 units, this method unprecedentedly constructs a pyrazole ring on an indole ring skeleton through the formation of two C-N bonds and a C-C bond in a single reaction.

6.
J Hazard Mater ; 459: 132229, 2023 Oct 05.
Article in English | MEDLINE | ID: mdl-37549576

ABSTRACT

In this study, the performance and mechanism of the integrated sulfidated nanosized zero-valent iron and ferrous ions (S-nZVI/Fe2+) system for oxygen activation to remove emerging contaminants (ECs) were comprehensively explored. The S-nZVI/Fe2+ system exhibited a 2.4-8.2 times of increase in the pseudo-first order kinetic rate constant for the oxidative degradation of various ECs compared to the S-nZVI system under aerobic conditions, whereas negligible removal was observed in both nZVI and nZVI/Fe2+ systems. Moreover, remarkable EC mineralization efficiency and benign detoxification capacity were also demonstrated in the S-nZVI/Fe2+ system. We revealed that dosing Fe2+ promoted the corrosion of S-nZVI by maintaining an acidic solution pH, which was conducive to O2 activation by dissolved Fe2+ and surface-absorbed Fe(II) to produce •OH. Furthermore, the generation of H* was enhanced for the further reduction of Fe(III) and H2O2 to Fe(II) and •O2-, resulting in the improvement of consecutive single-electron O2 activation for •OH production. Additionally, bisphenol A (BPA) degradation by S-nZVI/Fe2+ was positively correlated with the S-nZVI dosage, with an optimum S/Fe molar ratio of 0.15. The Fenton-like degradation process by S-nZVI/Fe2+ was pH-insensitive, indicating its robust performance over a wide pH range. This study provides valuable insights for the practical implementation of nZVI-based technology in achieving high-efficiency removal of ECs from water.

7.
Cytokine ; 170: 156335, 2023 10.
Article in English | MEDLINE | ID: mdl-37591136

ABSTRACT

Cancer cells, endothelial cells, inflammatory cells and various cytokines form a part of the tumor microenvironment (TME). Chemokines constitute the largest family of cytokines, and are mainly secreted by tumor cells and inflammatory cells in the TME. They play an important role in tumor development and progression by promoting tumor growth and metastasis, angiogenesis, and targeting the chemoattraction of inflammatory cells. Currently, some chemokine receptor antagonists are being used in clinical trials as targeted anti-tumor drugs. In this article, we review the roles of chemokines in the development and progression of malignant tumors based on recently published papers, taking into consideration of the new anti-tumor therapeutic strategies targeting chemokines and receptors.


Subject(s)
Endothelial Cells , Neoplasms , Humans , Chemokines , Cytokines , Biological Transport , Tumor Microenvironment
8.
Infect Dis Poverty ; 12(1): 43, 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37095536

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) can involve persistence, sequelae, and other clinical complications that last weeks to months to evolve into long COVID-19. Exploratory studies have suggested that interleukin-6 (IL-6) is related to COVID-19; however, the correlation between IL-6 and long COVID-19 is unknown. We designed a systematic review and meta-analysis to assess the relationship between IL-6 levels and long COVID-19. METHODS: Databases were systematically searched for articles with data on long COVID-19 and IL-6 levels published before September 2022. A total of 22 published studies were eligible for inclusion following the PRISMA guidelines. Analysis of data was undertaken by using Cochran's Q test and the Higgins I-squared (I2) statistic for heterogeneity. Random-effect meta-analyses were conducted to pool the IL-6 levels of long COVID-19 patients and to compare the differences in IL-6 levels among the long COVID-19, healthy, non-postacute sequelae of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection (non-PASC), and acute COVID-19 populations. The funnel plot and Egger's test were used to assess potential publication bias. Sensitivity analysis was used to test the stability of the results. RESULTS: An increase in IL-6 levels was observed after SARS-CoV-2 infection. The pooled estimate of IL-6 revealed a mean value of 20.92 pg/ml (95% CI = 9.30-32.54 pg/ml, I2 = 100%, P < 0.01) for long COVID-19 patients. The forest plot showed high levels of IL-6 for long COVID-19 compared with healthy controls (mean difference = 9.75 pg/ml, 95% CI = 5.75-13.75 pg/ml, I2 = 100%, P < 0.00001) and PASC category (mean difference = 3.32 pg/ml, 95% CI = 0.22-6.42 pg/ml, I2 = 88%, P = 0.04). The symmetry of the funnel plots was not obvious, and Egger's test showed that there was no significant small study effect in all groups. CONCLUSIONS: This study showed that increased IL-6 correlates with long COVID-19. Such an informative revelation suggests IL-6 as a basic determinant to predict long COVID-19 or at least inform on the "early stage" of long COVID-19.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Interleukin-6 , Post-Acute COVID-19 Syndrome
9.
Front Endocrinol (Lausanne) ; 13: 1042511, 2022.
Article in English | MEDLINE | ID: mdl-36339447

ABSTRACT

Leptin has been found to be involved in the development and progression of many autoimmune diseases. As an organ-specific autoimmune disease, the pathogenesis of Hashimoto's thyroiditis has not been fully elucidated. It has been reported that serum leptin level is increased in Hashimoto's thyroiditis, but other studies have not shown any difference. We replicated a mouse model of experimental autoimmune thyroiditis (EAT) with a high-iodine diet and found that injection of the leptin receptor antagonist Allo-aca reduced thyroid follicle destruction and inflammatory cell infiltration in EAT mice, and thyroxine and thyroid autoimmune antibody levels. Further investigation revealed that Allo-aca promotes the differentiation of Treg cells and inhibits the differentiation of Th17 cells. We believe that Allo-aca can alter the differentiation of Treg/Th17 cells by inhibiting the leptin signaling pathway, thereby alleviating thyroid injury in EAT mice. Interfering with the leptin signaling pathway may be a novel new approach to treat treating and ameliorating Hashimoto's thyroiditis.


Subject(s)
Autoimmune Diseases , Hashimoto Disease , Thyroiditis, Autoimmune , Mice , Animals , Thyroiditis, Autoimmune/drug therapy , Th17 Cells/metabolism , Th17 Cells/pathology , Leptin , T-Lymphocytes, Regulatory , Receptors, Leptin , Autoimmune Diseases/metabolism , Cell Differentiation
10.
Infect Dis Poverty ; 11(1): 109, 2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36273213

ABSTRACT

BACKGROUND: Zoonoses are public health threats that cause severe damage worldwide. Zoonoses constitute a key indicator of One Health (OH) and the OH approach is being applied for zoonosis control programmes of zoonotic diseases. In a very recent study, we developed an evaluation system for OH performance through the global OH index (GOHI). This study applied the GOHI to evaluate OH performance for zoonoses in sub-Saharan Africa. METHODS: The framework for the OH index on zoonoses (OHIZ) was constructed including five indicators, 15 subindicators and 28 datasets. Publicly available data were referenced to generate the OHIZ database which included both qualitative and quantitative indicators for all sub-Sahara African countries (n = 48). The GOHI algorithm was used to estimate scores for OHIZ. Indicator weights were calculated by adopting the fuzzy analytical hierarchy process. RESULTS: Overall, five indicators associated with weights were generated as follows: source of infection (23.70%), route of transmission (25.31%), targeted population (19.09%), capacity building (16.77%), and outcomes/case studies (15.13%). Following the indicators, a total of 37 sub-Sahara African countries aligned with OHIZ validation, while 11 territories were excluded for unfit or missing data. The OHIZ average score of sub-Saharan Africa was estimated at 53.67/100. The highest score was 71.99 from South Africa, while the lowest score was 40.51 from Benin. It is also worth mentioning that Sub-Sahara African countries had high performance in many subindicators associated with zoonoses, e.g., surveillance and response, vector and reservoir interventions, and natural protected areas, which suggests that this region had a certain capacity in control and prevention or responses to zoonotic events. CONCLUSIONS: This study reveals that it is possible to perform OH evaluation for zoonoses in sub-Saharan Africa by OHIZ. Findings from this study provide preliminary research information in advancing knowledge of the evidenced risks to strengthen strategies for effective control of zoonoses and to support the prevention of zoonotic events.


Subject(s)
One Health , Animals , Zoonoses/epidemiology , Public Health , Global Health , South Africa
11.
Infect Dis Poverty ; 11(1): 57, 2022 May 22.
Article in English | MEDLINE | ID: mdl-35599310

ABSTRACT

BACKGROUND: A One Health approach has been increasingly mainstreamed by the international community, as it provides for holistic thinking in recognizing the close links and inter-dependence of the health of humans, animals and the environment. However, the dearth of real-world evidence has hampered application of a One Health approach in shaping policies and practice. This study proposes the development of a potential evaluation tool for One Health performance, in order to contribute to the scientific measurement of One Health approach and the identification of gaps where One Health capacity building is most urgently needed. METHODS: We describe five steps towards a global One Health index (GOHI), including (i) framework formulation; (ii) indicator selection; (iii) database building; (iv) weight determination; and (v) GOHI scores calculation. A cell-like framework for GOHI is proposed, which comprises an external drivers index (EDI), an intrinsic drivers index (IDI) and a core drivers index (CDI). We construct the indicator scheme for GOHI based on this framework after multiple rounds of panel discussions with our expert advisory committee. A fuzzy analytical hierarchy process is adopted to determine the weights for each of the indicators. RESULTS: The weighted indicator scheme of GOHI comprises three first-level indicators, 13 second-level indicators, and 57 third-level indicators. According to the pilot analysis based on the data from more than 200 countries/territories the GOHI scores overall are far from ideal (the highest score of 65.0 out of a maximum score of 100), and we found considerable variations among different countries/territories (31.8-65.0). The results from the pilot analysis are consistent with the results from a literature review, which suggests that a GOHI as a potential tool for the assessment of One Health performance might be feasible. CONCLUSIONS: GOHI-subject to rigorous validation-would represent the world's first evaluation tool that constructs the conceptual framework from a holistic perspective of One Health. Future application of GOHI might promote a common understanding of a strong One Health approach and provide reference for promoting effective measures to strengthen One Health capacity building. With further adaptations under various scenarios, GOHI, along with its technical protocols and databases, will be updated regularly to address current technical limitations, and capture new knowledge.


Subject(s)
One Health , Forecasting , Global Health
12.
Environ Res ; 210: 112897, 2022 07.
Article in English | MEDLINE | ID: mdl-35151661

ABSTRACT

Chemical structure of azo dyes molecules showed significant influence on their decolorization rate, while the structure-activity relationship between chemical structure and their reduction decolorization rate is not fully understand. In this study, we found that azo dye molecule with closer position for electron-withdrawing substituent to azo bond resulted in faster chemical and biotic reduction rate with or without presence of carbon nanotubes (CNTs), while electron-repulsive substituent closer to azo bond leading to slower azo dye chemical and biotic reduction rate no matter with or without presence of CNTs. Additionally, galvanic cell experiments implied that electron transfer process may play important roles for both chemical and biological reduction decolorization of azo dyes, and CV results indicated that the higher (azo bond breakage) reduction wave potential corresponding to a faster azo dye chemical decolorization reaction. Finally, the results of Lowest Unoccupied Molecular Orbital (LUMO) energy established that lower LUMO energy for azo dye corresponding to a faster chemical decolorization reaction. This study not only offer systematized relationships between structure property of azo dye and their decolorization rate, but also provide a universal and propagable reduction rules.


Subject(s)
Azo Compounds , Nanotubes, Carbon , Azo Compounds/chemistry , Coloring Agents/chemistry , Electrons , Structure-Activity Relationship
13.
Environ Res ; 209: 112815, 2022 06.
Article in English | MEDLINE | ID: mdl-35093311

ABSTRACT

The widespread application of quaternary ammonium compounds (QAC) has posed a serious hazard to the environment and human being, and high concentration of Cl- in QAC wastewater may further increase the difficulty of pollutants elimination. In this study, such a QAC wastewater under high salinity conditions was chosen as the target, the prepared Ti/(RuxIry)O2 anode exhibited favorable catalytic performance for the oxidation and mineralization of QAC under high salinity conditions. Increasing the Ru/Ir ratio of Ti-based electrode coating also slightly promoted the inner catalytic capacity. The combination of electron paramagnetic resonance (EPR) and quenching experiments indicates that 1O2 served as a main reactive specie in the Ti/(RuxIry)O2 electrooxidation system. The increase of pH could decrease the removal efficiency of QAC for the reduced 1O2 yield, and the rise of Cl- concentration could favor the QAC oxidation, and Cl- was a better electrolyte to promote the oxidation of organic contaminants when compared to Na2SO4 or Na2CO3. Additionally, the conversion pathway of the model pollutant was tentatively investigated, the results demonstrated that there were almost no halogenated final products residual by electrocatalytic oxidation with Ti/(RuxIry)O2 anode. This study not only elucidate the reaction mechanism of Ti/(RuxIry)O2 anode electrocatalytic oxidation of high salinity QAC wastewater, but also may provide an efficacious and eco-friendly method for the treatment of high salinity QAC wastewater.


Subject(s)
Wastewater , Water Pollutants, Chemical , Electrodes , Humans , Oxidation-Reduction , Quaternary Ammonium Compounds , Salinity , Singlet Oxygen , Titanium/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/analysis
14.
Zhongguo Zhong Yao Za Zhi ; 46(22): 5936-5943, 2021 Nov.
Article in Chinese | MEDLINE | ID: mdl-34951185

ABSTRACT

The disease-gene-drug multi-level network constructed by network pharmacology can predict drug targets and has been widely used in the study of material basis and mechanism of action of Chinese medicinal prescriptions. However, most of the current studies have normalized the efficacies of Chinese herbal medicines in the compounds during the construction of the network. There is also a lack of in-depth exploration of the mechanism of synergy among multiple components. This study proposed a network module partition method based on group collaboration and the pharmacological network was weighed according to the traditional Chinese medicine(TCM) theory of "monarch, minister, assistant and guide". Taking the Tanyu Tongzhi Prescription as an example, we constructed its pharmacological network for the treatment of myocardial ischemia-reperfusion injury. The group collaboration module in the network was identified and the network changes before and after the weighting were compared based on the network topology analysis to explore a new method to find the core nodes of the network as well as the core drugs that affected the efficacy of the compounds. The results showed that the module partition method based on group collaboration could be used to identify and partition group collaboration mo-dules in pharmacological networks of compounds. The proposed weighted network based on the TCM theory of "monarch, minister, assistant, and guide" could identify and partition the modules based on the characteristics of the pharmacological network. The identification and partition results of modules of Tanyu Tongzhi Prescription in the weighted network were superior to those in the unweighted network. The weighted closeness centrality(WCC) evaluation method was conducive to finding key nodes and relations in the network as compared with traditional methods, thereby providing a basis for analyzing the core components of drugs and extracting more accurate drug components and targets.


Subject(s)
Drugs, Chinese Herbal , Clergy , Humans , Medicine, Chinese Traditional , Network Pharmacology , Research Design
15.
Gut Microbes ; 13(1): 1979883, 2021.
Article in English | MEDLINE | ID: mdl-34632939

ABSTRACT

High alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut microbiota had been demonstrated to be the causative agent of fatty liver disease (FLD). However, the catabolic pathways for alcohol production in vivo remain unclear. Here, we characterized the genome of HiAlc and medium alcohol-producing (MedAlc) Kpn and constructed an adh (an essential gene encoding alcohol dehydrogenase) knock-out HiAlc Kpn W14 strain (W14Δadh) using CRISPR-Cas9 system. Subsequently, we established the mouse model via gavage administration of HiAlc Kpn W14 and W14 Δadh strains, respectively. Proteome and metabolome analysis showed that 10 proteins and six major metabolites involved in the 2,3-butanediol fermentation pathway exhibited at least a three-fold change or greater during intestinal growth. Compared with HiAlc Kpn W14-fed mice, W14Δadh-fed mice with weak alcohol-producing ability did not show apparent pathological changes at 4 weeks, although some steatotic hepatocytes were observed at 12 weeks. Our data demonstrated that carbohydrate substances are catabolized to produce alcohol and 2,3-butanediol via the 2,3-butanediol fermentation pathway in HiAlc Kpn, which could be a promising clinical diagnostic marker. The production of high amounts of endogenous alcohol is responsible for the observed steatosis effects in hepatocytes in vivo.


Subject(s)
Butylene Glycols/metabolism , Ethanol/metabolism , Klebsiella pneumoniae/metabolism , Liver Diseases/microbiology , Adult , Animals , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Ethanol/blood , Fermentation , Gastrointestinal Microbiome , Humans , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/isolation & purification , Liver Diseases/blood , Male , Mice , Mice, Inbred C57BL , Rabbits , Rats, Sprague-Dawley
16.
Nat Commun ; 12(1): 4568, 2021 07 27.
Article in English | MEDLINE | ID: mdl-34315882

ABSTRACT

Insulin/IGF-1 Signaling (IIS) is known to constrain longevity by inhibiting the transcription factor FOXO. How phosphorylation mediated by IIS kinases regulates lifespan beyond FOXO remains unclear. Here, we profile IIS-dependent phosphorylation changes in a large-scale quantitative phosphoproteomic analysis of wild-type and three IIS mutant Caenorhabditis elegans strains. We quantify more than 15,000 phosphosites and find that 476 of these are differentially phosphorylated in the long-lived daf-2/insulin receptor mutant. We develop a machine learning-based method to prioritize 25 potential lifespan-related phosphosites. We perform validations to show that AKT-1 pT492 inhibits DAF-16/FOXO and compensates the loss of daf-2 function, that EIF-2α pS49 potently inhibits protein synthesis and daf-2 longevity, and that reduced phosphorylation of multiple germline proteins apparently transmits reduced DAF-2 signaling to the soma. In addition, an analysis of kinases with enriched substrates detects that casein kinase 2 (CK2) subunits negatively regulate lifespan. Our study reveals detailed functional insights into longevity.


Subject(s)
Caenorhabditis elegans/physiology , Insulin/metabolism , Longevity/physiology , Signal Transduction , Algorithms , Amino Acid Sequence , Animals , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans Proteins/metabolism , Germ Cells/metabolism , Humans , Insulin-Like Growth Factor I/metabolism , Models, Biological , Mutation/genetics , Phosphoproteins/metabolism , Phosphorylation , Proteome/metabolism , Proteomics
17.
Front Public Health ; 9: 809453, 2021.
Article in English | MEDLINE | ID: mdl-35178375

ABSTRACT

This paper explores the impact of joining centralized drug procurement of China on the profitability of medical enterprises by the difference-in-difference (DID) model. When centralized procurement cannot bring enough cost savings to enterprises, the price competition caused by centralized procurement will lead to the decline of enterprise profits. In the short term, the negative impact of China's drug centralized procurement policy on the net profit of enterprises is not obvious in the year when enterprises win the bid. After the government officially purchases from pharmaceutical enterprises, the negative impact of the drug centralized procurement policy of China on the net profit of enterprises begins to appear gradually. Therefore, the generic drug manufacturers increase R&D investment and have their own heavy products of original drugs as soon as possible to enhance their core competitiveness.


Subject(s)
Drugs, Generic , Government , China
18.
Biosens Bioelectron ; 160: 112231, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32469730

ABSTRACT

Anodic N doping is an effective way to improve power generation of bioelectrochemical systems (BESs), but the role of various active N dopant states of the anode on BES performance is still unclear. Herein, the effect of anodic active N dopant states on bioelectricity generation of Shewanella oneidensis MR-1 inoculated BESs particularly including microbial extracellular electron transfer (EET) was explored using experiments and theoretical simulations. It was found a positive linear correlation between the peak current density of BESs and pyrrolic N content of the anode, which would mainly ascribe to the enhancement of both direct electron transfer (DET) and mediated electron transfer (MET) of S. oneidensis MR-1. Morever, the molecule dynamic simulation revealed that such EET improvements of S. oneidensis MR-1 could be due to more remarkable reduction in the thermodynamic and kinetic resistances of the DET and MET processes with anodic doping of pyrrolic N compared to pyridinic N and graphitic N. This work provides a valuable guideline to design of high-performance anodes for potential BES applications.


Subject(s)
Bioelectric Energy Sources/microbiology , Pyrroles/chemistry , Shewanella/metabolism , Electricity , Electrodes/microbiology , Electron Transport , Electrons , Molecular Dynamics Simulation
19.
Environ Sci Technol ; 53(8): 4397-4405, 2019 04 16.
Article in English | MEDLINE | ID: mdl-30908036

ABSTRACT

Pyrogenic carbonaceous matter (PCM) catalyzes the transformation of a range of organic pollutants by sulfide in water; however, the mediation mechanisms are not fully understood. In this study, we observed for the first time that the degradation of azo dyes by sulfide initially underwent a lag phase followed by a fast degradation phase. Interestingly, the presence of PCM only reduced the lag phase length of the azo dye decolorization but did not significantly enhance the reaction rate in the fast degradation phase. An analysis of the azo dye reduction and polysulfide formation indicated that PCM facilitated the transformation of sulfide into polysulfides, including disulfide and trisulfide, resulting in fast azo dye reduction. Moreover, the oxygen functional groups of the PCM, especially the quinones, may play an important role in the transformation of sulfide into polysulfides by accelerating the electron transfer. The results of this study provide a better understanding of the PCM-mediated abiotic transformation of organic pollutants by sulfide in anaerobic aqueous environments.


Subject(s)
Azo Compounds , Sulfides , Coloring Agents , Electron Transport , Oxidation-Reduction , Quinones
20.
Aging Cell ; 18(3): e12896, 2019 06.
Article in English | MEDLINE | ID: mdl-30773782

ABSTRACT

The roles and regulatory mechanisms of transcriptome changes during aging are unclear. It has been proposed that the transcriptome suffers decay during aging owing to age-associated down-regulation of transcription factors. In this study, we characterized the role of a transcription factor DAF-16, which is a highly conserved lifespan regulator, in the normal aging process of Caenorhabditis elegans. We found that DAF-16 translocates into the nucleus in aged wild-type worms and activates the expression of hundreds of genes in response to age-associated cellular stress. Most of the age-dependent DAF-16 targets are different from the canonical DAF-16 targets downstream of insulin signaling. This and other evidence suggest that activation of DAF-16 during aging is distinct from activation of DAF-16 due to reduced signaling from DAF-2. Further analysis showed that it is due in part to a loss of proteostasis during aging. We also found that without daf-16, dramatic gene expression changes occur as early as on adult day 2, indicating that DAF-16 acts to stabilize the transcriptome during normal aging. Our results thus reveal that normal aging is not simply a process in which the gene expression program descends into chaos due to loss of regulatory activities; rather, there is active transcriptional regulation during aging.


Subject(s)
Aging/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans/genetics , Forkhead Transcription Factors/genetics , Stress, Physiological , Transcriptome , Aging/metabolism , Animals , Caenorhabditis elegans Proteins/metabolism , Forkhead Transcription Factors/metabolism , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...